
Journal of Computational Physics 228 (2009) 7137–7158
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Efficient solutions to robust, semi-implicit discretizations
of the immersed boundary method

Hector D. Ceniceros a, Jordan E. Fisher a,*, Alexandre M. Roma b

a Department of Mathematics, University of California Santa Barbara, CA 93106, United States
b Departamento de Matemática Aplicada, Universidade de São Paulo, Caixa Postal 66281, CEP 05311-970, São Paulo-SP, Brazil

a r t i c l e i n f o
Article history:
Received 24 December 2008
Received in revised form 13 April 2009
Accepted 6 May 2009
Available online 27 May 2009

Keywords:
Semi-implicit method
Stokes flow
Navier–Stokes equations
Heart valve
Multigrid
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.05.031

* Corresponding author.
E-mail addresses: hdc@math.ucsb.edu (H.D. Ceni
URLs: http://www.math.ucsb.edu/~hdc (H.D. Cen
a b s t r a c t

The immersed boundary method is a versatile tool for the investigation of flow-structure
interaction. In a large number of applications, the immersed boundaries or structures are
very stiff and strong tangential forces on these interfaces induce a well-known, severe
time-step restriction for explicit discretizations. This excessive stability constraint can be
removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohib-
itive computational cost. While economical alternatives have been proposed recently for
some special cases, there is a practical need for a computationally efficient approach that
can be applied more broadly. In this context, we revisit a robust semi-implicit discretiza-
tion introduced by Peskin in the late 1970s which has received renewed attention recently.
This discretization, in which the spreading and interpolation operators are lagged, leads to
a linear system of equations for the interface configuration at the future time, when the
interfacial force is linear. However, this linear system is large and dense and thus it is chal-
lenging to streamline its solution. Moreover, while the same linear system or one of similar
structure could potentially be used in Newton-type iterations, nonlinear and highly stiff
immersed structures pose additional challenges to iterative methods. In this work, we
address these problems and propose cost-effective computational strategies for solving
Peskin’s lagged-operators type of discretization. We do this by first constructing a suffi-
ciently accurate approximation to the system’s matrix and we obtain a rigorous estimate
for this approximation. This matrix is expeditiously computed by using a combination of
pre-calculated values and interpolation. The availability of a matrix allows for more effi-
cient matrix–vector products and facilitates the design of effective iterative schemes. We
propose efficient iterative approaches to deal with both linear and nonlinear interfacial
forces and simple or complex immersed structures with tethered or untethered points.
One of these iterative approaches employs a splitting in which we first solve a linear prob-
lem for the interfacial force and then we use a nonlinear iteration to find the interface con-
figuration corresponding to this force. We demonstrate that the proposed approach is
several orders of magnitude more efficient than the standard explicit method. In addition
to considering the standard elliptical drop test case, we show both the robustness and effi-
cacy of the proposed methodology with a 2D model of a heart valve.

� 2009 Elsevier Inc. All rights reserved.
. All rights reserved.

ceros), jordan@math.ucsb.edu (J.E. Fisher), roma@ime.usp.br (A.M. Roma).
iceros), http://www.ime.usp.br/~roma (A.M. Roma).

mailto:hdc@math.ucsb.edu
mailto:jordan@math.ucsb.edu
mailto:roma@ime.usp.br
http://www.math.ucsb.edu/~hdc
http://www.ime.usp.br/~roma
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

7138 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
1. Introduction

The immersed boundary (IB) Method introduced by Peskin [1] is a versatile tool for simulating flow-structure interaction
in a wide range of applications. The IB method employs a Lagrangian representation of the immersed structures and their
interfacial forces and an Eulerian description of the flow variables (velocity and pressure). The Lagrangian description of
the immersed boundaries, which does not have to conform to the Eulerian grid, provides a vast structure-building capability
while the Eulerian flow description permits the use of efficient flow solvers. The power of the IB Method lies in a seamless
connection of the two descriptions by the use of two operations: spreading (of interfacial forces) and interpolation (of velocity
at the immersed boundary), both achieved via mollified delta functions.

In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on
these interfaces induce severe time-step restrictions for explicit discretization [2,3]. Fully implicit discretizations and some
suitable semi-implicit schemes remove this hindering constraint but seemingly at a cost that makes these options imprac-
tical [4,5]. Recently, an economical semi-implicit method has been proposed by Hou and Shi [6,7]. This novel approach relies
on an ingenious small scale decomposition and becomes explicit in Fourier space. While nearly computationally optimal, the
method of Hou and Shi is applicable only to simple periodic interfaces. Thus, there is a practical need for a robust, cost-effec-
tive approach that can be applied more broadly; one that can be used for immersed structures of complex geometry with
crossed links as well as a mix of tethered and untethered points, which are required in many of the applications of the IB
Method. The advancement of such an approach is the main focus of this work.

Our starting point is a semi-implicit scheme introduced by Peskin [1] in the late 1970s, in which the spreading and inter-
polation operators are lagged, i.e. evaluated at the current interfacial configuration rather than at the future one. Variations
of this scheme were also considered by Tu and Peskin [4] and by Mayo and Peskin [5]. This lagged-operators discretization
has recently received renewed attention. In particular, Newren, Fogelson, Guy, and Kirby proved that this scheme, in its first
order or second order Crank–Nicolson form, is unconditionally stable when inertia is neglected and the interfacial force is
linear and self-adjoint [8]. Numerical experiments in [8], as well as our own experiments, suggest the robustness of this dis-
cretization extends to the inertial case with nonlinear interfacial force. Thus, it is now established that Peskin’s original semi-
implicit discretization enjoys great stability properties and robustness, hence the relevant question is whether its solution
can be computed at a reasonable cost. Recently, Mori and Peskin [9] took an important step to answer this question. They
considered a variation of this scheme, with a linearized tension force discretization which leads to a linear system of equa-
tions for the interface configuration at the future time-step. They also proposed a fully implicit method solved iteratively
where each of the iterates has the same structure as the linearized semi-implicit discretization. Mori and Peskin opted for
Krylov subspace methods to solve the linear system to take advantage of the fact that matrix–vector products can be ob-
tained via standard operations in the IB Method and to avoid the construction of the system’s dense matrix.

In this work we demonstrate that the solution to Peskin’s operator-lagged discretization can be obtained much more effi-
ciently by working directly with the matrix, and by using suitable linear and nonlinear iterative methods. More precisely, we
construct a sufficiently accurate approximation to the matrix which can be expeditiously obtained by using a combination of
pre-computed values and interpolation. The availability of a matrix allows for streamlined matrix–vector products and facil-
itates the design of effective iterative schemes.

Most of the work to date on the investigation and removal of the numerical stiffness of the IB Method has focused on a
simple test problem: a relaxing elliptical drop. While this test model contains the characteristic high stiffness of the IB ap-
proach in a simple interfacial geometry it does not showcase the additional complications that might arise when the im-
mersed structure is composed of crossed links with both tethered and untethered points. Such complex structures are
common in applications, starting with the origins of the method to investigate blood flow in the heart [1]. Thus, in addition
to obtaining efficient methods for the standard elliptical drop test case, we also propose cost-effective iterative methods to
deal with cases of more complex immersed structures. In our proposed approach we employ a splitting in which we first
solve efficiently a linear problem for the interfacial force and then we use a fast-converging nonlinear iteration to find
the interface configuration corresponding to this force. We develop this method in the context of a 2D model of a heart valve
and demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit
method.

The rest of the paper is organized as follows. In Section 2, we review the formulation of the IB Method. Section 3 deals
with the discretization with the focus on Peskin’s semi-implicit scheme with lagged-operators. We devote Section 5 to
the construction of the matrix approximation and to a rigorous estimate of that approximation. In Section 6, we consider
the case of the relaxing elliptical drop with linear force density while the case of a nonlinear force and the same interfacial
configuration is considered in Section 7. Section 8 is devoted to the simple 2D model of the heart valve and the splitting
scheme and concluding remarks are presented in Section 9.
2. The immersed boundary method

To describe the method, in its simplest form, we consider a two-dimensional, incompressible, Newtonian fluid occupying
a domain X � R2. Inside this domain we assume that there is an immersed, neutrally buoyant, elastic structure (also referred
to as boundary or interface). This immersed interface is composed of a system C of elastic fibers whose position at any time t

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7139
is represented in Lagrangian form by Xðs; tÞ, where s 2 B is a Lagrangian parameter. The interface C need not be closed or
even continuous. The governing equations are:
q
@u
@t
þ u � ru

� �
¼ �rpþ lr2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

@X
@t
¼ uðX; tÞ; ð3Þ
where q and l are the density and viscosity, respectively (both assumed to be constant). Here uðx; tÞ and pðx; tÞ are the veloc-
ity field and the pressure, respectively, described in terms of the Eulerian, Cartesian coordinate x. The term f represents the
singularly supported interfacial (tension) force of the immersed structure acting onto the fluid. The system (1)–(3) is sup-
plemented with initial and boundary conditions. Throughout this work, we consider only periodic boundary conditions
and X is a rectangular domain.

The crux of the IB method and much of its versatility is the seamless connection of the Lagrangian representation of the
immersed structure with the Eulerian representation of the flow. This is achieved via the identities:
@X
@t
¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx; ð4Þ

fðx; tÞ ¼
Z

B
FðXð�; �Þ; s; tÞdðx� Xðs; tÞÞds; ð5Þ
where d denotes the (two-dimensional) Dirac delta distribution. In (5), F represents the elastic force density of C and is de-
scribed in Lagrangian coordinates. For example, if the tangent direction t along the fibers varies smoothly and if the local
elastic energy density is assumed to depend only on the tangential strain @X

@s

�� �� then
FðX; s; tÞ ¼ @

@s
T

@X
@s

���� ����� �
t

� �
: ð6Þ
Here T @X
@s

�� ��� �
is the fiber (interfacial) tension and t is the unit tangent,
t ¼
@X
@s
@X
@s

�� �� : ð7Þ
Thus F is in general a nonlinear function of the interfacial configuration. We denote this relation by
F ¼ AðXÞ: ð8Þ
3. Discretization

We consider uniform Cartesian grids GX and GB with grid size h and hB, respectively to discretize X and B and employ stan-
dard second order finite differences for the spatial derivatives. We write Peskin’s original semi-implicit discretization in the
form
q
unþ1 � un

Dt
þ un � Dhun

� �
¼ �Dhpnþ1 þ lLhunþ1 þ SnAhB

ðXnþ1Þ; ð9Þ

Dh � unþ1 ¼ 0; ð10Þ

Xnþ1 � Xn

Dt
¼ S�nunþ1; ð11Þ
where a superscript m denotes a numerical approximation taken at the time mDt and Dt is the time-step. The spatial oper-
ators Dh and Lh are the standard second order approximations to the gradient and the Laplacian, respectively, and AhB is a
suitable discrete version of A.
Sn and S�n are the lagged spreading and interpolation operators, respectively, given by
ðSnGÞðxÞ ¼
X
s2GB

GðsÞdhðx� XnðsÞÞhB; ð12Þ

ðS�nwÞðsÞ ¼
X
x2GX

wðxÞdhðx� XnðsÞÞh2
; ð13Þ

7140 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
where dhðxÞ ¼ dhðxÞdhðyÞ and dh is an approximation of the one-dimensional delta. These operators are called lagged because
the interface configuration Xn is used instead of the future configuration Xnþ1.

There is flexibility in the choice of dh but for concreteness in the presentation we choose Peskin’s delta [1]:
dhðrÞ ¼
1

4h 1þ cosðpr
2hÞ

� �
if jrj 6 2h

0 otherwise:

(
ð14Þ
Let us rewrite (9) as
unþ1 ¼ �Dt
q

Dhpnþ1 þ mDtLhunþ1 þ anþ1; ð15Þ
where m ¼ l=q and
anþ1 ¼ Dt
q
SnAhB

ðXnþ1Þ þ un � Dtun � rhun: ð16Þ
We can eliminate the pressure term in (15) using (10) by introducing a discrete projection Ph defined as
v ¼ Phv þ Dh/v ; Dh � Phv ¼ 0; PhDh/v ¼ 0: ð17Þ
for any smooth vector field v defined on the grid GX. Applying Ph to (15), using (10) and that for periodic boundary conditions
Lh and Ph commute we get
unþ1 ¼ mDtLhunþ1 þ Phanþ1; ð18Þ
that is
unþ1 ¼ ðI � mDtLhÞ�1Phanþ1: ð19Þ
Let us denote
Lh ¼ ðI � mDtLhÞ�1Ph: ð20Þ
Lh is a linear operator which henceforth we will refer to as the fluid solver. Note that with periodic boundary conditions
and a standard second order finite difference approximation for the spatial derivatives, I � mDtLh is symmetric and positive
definite and as a result so is its inverse. On the other hand, Ph is also symmetric and, being a projection, it is positive semi-
definite. Moreover, Ph and ðI � mDtLhÞ�1 commute as can be shown using the discrete Fourier transform. Consequently, these
two symmetric operators can be diagonalized by the same orthogonal matrix and thus the product, Lh, is positive semi-
definite.

Using this notation, Peskin’s semi-implicit method can be encoded as
unþ1 ¼ Lhanþ1; ð21Þ

Xnþ1 ¼ Xn þ DtS�nunþ1; ð22Þ
where anþ1 is given by (16). Eliminating unþ1 in (22) we obtain a system of equations for the immersed boundary configu-
ration Xnþ1:
Xnþ1 ¼MnAhB
ðXnþ1Þ þ bn

; ð23Þ
where
Mn ¼ aS�nLhSn; ð24Þ
with
a ¼ ðDtÞ2

q
ð25Þ
and
bn ¼ Xn þ DtS�nLh½un � Dtun � rhun�: ð26Þ
We have thus reduced (9) and (11) to a single system of equations involving only the unknown Xnþ1. If the number of
Lagrangian nodes is NB then (23) represents a system of 2NB equations for the 2NB values Xnþ1 ¼ ðXnþ1;Ynþ1Þ. If we can solve
this system then we can obtain unþ1 via (21).

Note that the positive semi-definiteness of Lh extends to Mn. Indeed, if we define the inner product on X as
ðu; vÞX ¼
X
x2GX

uðxÞvðxÞh2
; ð27Þ

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7141
ðu;vÞX ¼ ðu1;v1ÞX þ ðu2;v2ÞX; ð28Þ
and on B as
ðF;GÞB ¼
X
x2GB

FðxÞGðxÞhB; ð29Þ

ðF;GÞB ¼ ðF1;G1ÞB þ ðF2;G2ÞB; ð30Þ
then Sn and S�n as given in (12) and (13) are adjoints to each other and
ðF;MnFÞB ¼ aðF;S�nLhSnFÞB ¼ aðSnF;LhSnFÞB P 0: ð31Þ
In fact, ðF;MnFÞB > 0 for F ne 0 unless the Eulerian force SnF is in the kernel of the projection, i.e. if it is a gradient field, or
if there are too many Lagrangian points per Eulerian cell and injectivity of Sn is lost. There are physical situations, such as for
example a circular drop under uniform surface tension at equilibrium, where the Eulerian force is a gradient field at the con-
tinuous level (to balance the gradient of the pressure). However, as it is well-known, the IB method spreading of the force
fails in general to produce a discrete gradient which results in the generation of non-zero velocities referred to as spurious
currents [10]. Ironically, this defect of the IB approach has the benefit of renderingMn positive definite provided Sn remains
injective. This is something that we will exploit via multigrid.

The focus of this paper is to propose efficient methods for solving (23) to be able to remove the severe numerical stiffness
of the IB Method in an economical and robust fashion for a wide range of practical flow-structure situations. Of course, to be
efficient the specific computational approach has to be dependent on the geometry of the immersed structure and the force
operator AhB . This is something that has been largely overlooked in the literature as the research has concentrated mostly on
understanding and removing the stiffness on a simple setting: an elliptical interface with a linear density force AhB . Here, we
consider both linear and nonlinear AhB with simple and complex immersed structure geometries to highlight the challenges
in producing efficient solvers and to illustrate our proposed approaches.
4. Some comments on computational costs and efficiency

One of the most commonly used schemes with an explicit treatment of the immersed boundary is the so-called Forward
Euler/Backward Euler (FE/BE) [3] in which the tension force is explicit (Forward Euler) and the viscous term is implicit (Back-
ward Euler). That is,
unþ1 ¼ Lh
Dt
q
SnAhB

ðXnÞ þ un � Dtun � rhun

� �
; ð32Þ

Xnþ1 ¼ Xn þ DtS�nunþ1: ð33Þ
The main cost of this scheme per time-step is the fluid solver, i.e. the operation involving Lh. On the other hand any solu-
tion method for (23) requires the evaluation of bn, given by (26), and thus at least one fluid solver operation. Hence, it seems
appropriate to measure the cost of iterative methods for (23) relative to that of one FE/BE time-step and we will refer to this
unit as one FE/BE. Our goal is to present robust solution methods to (23) that have cost of just a few FE/BE’s. Naturally, be-
cause the semi-implicit scheme allows for time steps several orders of magnitude larger than those permitted by the FE/BE
scheme in a stiff problem, the extra computational work per time-step will be more than compensated and a speed-up of
several orders of magnitude could be achieved.

In the design of efficient iterative methods for (23) it is crucial to streamline the calculation of quantities of the formMnF.
These quantities can be computed in two ways. Given an interface-defined vector F we can apply in sequence the operations
of spreading, fluid solver, and interpolation. Alternatively, we can construct a matrix representation ofMn and use matrix–
vector multiplication. Given that a direct computation of the matrix is prohibitively expensive, Nb� FE=BE, all related work
to date has avoided the latter approach. However, there are some advantages of having a matrix representation ofMn and, as
we show in the next section, it is possible to construct a sufficiently accurate approximation to the matrix in only OðFE=BEÞ
operations.

One of the advantages of having a matrix representation of the operatorMn is that we can gain access to a wider range of
iterative methods. Multigrid smoothers like Gauss–Seidel or S.O.R., which are inaccessible with the spreading-fluid solver-
interpolation approach, could be easily implemented if the matrix is available. Also, multigrid-based methods are greatly
simplified when we have a matrix representation of Mn, which allows us to employ a straightforward algebraic multigrid
as opposed to a geometric one. One of the more subtle issues with using a geometric multigrid is how to coarsen the Eulerian
grid. Uniform coarsening would be ineffective for example in the case of our heart valve model because as we coarsen the
valve geometry there remain points close together which would require a fine Eulerian mesh to resolve, see Fig. 4. If a geo-
metric multigrid were to be employed we would need to implement adaptive coarsening.

A second advantage of having a matrix representation ofMn is that we can obtain direct solutions of coarse (small) linear
systems of the formMnF ¼ Z which could be useful in a number of situations; an instance of this will be discussed later in
the context of the 2D heart valve model. But perhaps the main advantage is that of cost when computing quantities of the

7142 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
formMnF. If this matrix–vector product is computed via the operator sequence spreading-fluid solver-interpolation the cost
is about one FE/BE or OðN2 log NÞ þ OðNBÞ, when N2 is the number of Eulerian nodes and the fluid solver is based on the Fast
Fourier Transform (FFT). On the other hand, a matrix–vector multiplication involving Mn requires OðN2

BÞ operations. If
NB � N as it is typical in 2D applications, then the second approach has lower computational complexity. While the elimi-
nation of the factor log N might seem like a modest gain, we find that in practice (for NB ¼ 2N) using the matrix represen-
tation to compute matrix–vector products is significantly faster than the spreading-fluid solver-interpolation approach, even
at modest resolutions. Table 1 gives the CPU time in units of FE/BE (average CPU time of one FE/BE time-step for a given
N � N Eulerian grid and NB ¼ 2N) for matrix–vector multiplications computed using a matrix representation of Mn. For
example, at NB ¼ 1024, the computation of a matrix–vector product with this approach is 1=71 FE/BE, i.e. 71 times faster
than it would be using the spreading-fluid solver-interpolation option. If in addition, we take into the account that many
matrix–vector products are needed in the course of an iterative method then the computational savings are significant.
We note however that as the ratio NB=N increases the savings get reduced and the computational advantage of using the
matrix to obtain the product could be lost eventually. For example, in our application of the 2D heart valve model where
NB � 4N, the speedup in using the matrix form drops to roughly 10 at moderate to fine resolutions. While not as dramatic
as that in the NB ¼ 2N case, it still leads to substantial savings in the overall algorithm. However, in a fully 3D application
with a 2D immersed membrane we would have NB � N2 leading to a cost of OðN4Þ for a matrix–vector multiplication using
the matrix while obtaining the same product via spreading-fluid solver-interpolation would be OðN3 log NÞ. Indeed, some 3D
applications may use substantially more fiber points. The 3D heart model proposed by McQueen and Peskin [11] employs
nearly NB � N3 fiber points. Clearly, alternative methods that do not rely on the full matrix of the fluid operator will be re-
quired to handle these applications.

5. An expedited computation of a matrix representation of Mn

5.1. Approximation from translation invariance at the continuum level

Let us consider again the linear fluid solver operator (20) with periodic boundary conditions. Utilizing the Fourier trans-
form we obtain a representation formula of the form
Table 1
Average

NB ¼ 2N

Matrix–
LhfðxÞ ¼
X
y2GX

Ghðx� yÞfðyÞh2
; for x 2 GX; ð34Þ
where the Green function Ghðx� yÞ is a 2� 2 matrix with vanishing zero Fourier mode.
Recall thatMn ¼ aS�nLhSn, thus its entries ðMnÞij correspond to a times the velocity that is obtained by interpolating the

values produced at a given interfacial node Xi by spread unit horizontal and vertical forces located at another immersed
boundary node Xj. For the continuum problem this velocity depends only on the difference Xj � Xi but due to the spreading
and interpolation operators this translation invariance is not exact at the discrete level. However, as we prove later, we can
still obtain sufficiently accurate approximations to ðMnÞij by assuming translation invariance with the added benefit of a dra-
matic cost reduction. Specifically, we propose to approximate ðMnÞij with values obtained by shifting both Xi and Xj an equal
amount such that Xj lies exactly on an Eulerian node, which we may take as the origin. That is, we can fix the point (the
origin) at which unit horizontal and vertical forces are applied (and spread) and then evaluate the effects everywhere else
on the Eulerian grid by applying just two fluid solves: one each for a horizontal and vertical force at the origin. These Eulerian
grid values can be pre-computed at the beginning of the simulation and then be used as a look-up table to obtain the cor-
responding values at any interfacial point Xi via standard interpolation. The generation of the one-time lookup table is only
two FE=BE and the interpolation to generate the approximation of Mn is only OðN2

BÞ.
We proceed now to detail the computation of Mn. Define for each interfacial node j;1 6 j 6 NB, the unit forces
f j
k ¼

ð0;0Þ If k – j;

e1 If k ¼ j

	
1 6 k 6 NB; ð35Þ
and
gj
k ¼

ð0;0Þ If k – j;

e2 If k ¼ j

	
1 6 k 6 NB; ð36Þ
where e1 ¼ ð1;0Þ and e2 ¼ ð0;1Þ. Then
CPU time in FE/BE units for a matrix–vector multiplication involving Mn for given NB ¼ 2N.

256 512 1024

vector product 1/26.8 1/58 1/71

Table 2
Average

NB ¼ 2N

Matrix

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7143
ðMnf jÞi ¼ aS�nLh

X
Xk2GB

f j
kdhðx� XkÞhB

 !
i

; ð37Þ

¼ ahB S�nLhe1dhðx� XjÞ
� �

i; ð38Þ
¼ ahB

X
z2GX

ðLhe1dhðx� XjÞÞðzÞdhðz� XiÞh2
; ð39Þ

	 ahB

X
z2GX

ðLhe1dhðxÞÞðzÞdhðz� ðXi � XjÞÞh2
; ð40Þ
and similarly
ðMngjÞi 	 ahB

X
z2GX

ðLhe2dhðxÞÞðzÞdhðz� ðXi � XjÞÞh2
: ð41Þ
With these two approximations we define the vector-valued functions
TðyÞ ¼ ahB

X
z2GX

ðLhe1dhðxÞÞðzÞdhðz� yÞh2
; ð42Þ

UðyÞ ¼ ahB

X
z2GX

ðLhe2dhðxÞÞðzÞdhðz� yÞh2
; ð43Þ
and note that
ðMnf jÞi 	 TðXi � XjÞ; ð44Þ

ðMngjÞi 	 UðXi � XjÞ: ð45Þ
We can now compute the entries of a matrix representation of the linear operatorMn from T and U. To this end, we write
the configuration X of the discretized immersed structure as the 2NB-array
X ¼
X

Y

� �
¼

X1

..

.

XNB

Y1

..

.

YNB

266666666664

377777777775
; ð46Þ
and similarly we write F ¼ AhB ðXÞ ¼ ðF;GÞ
T . We seek then four NB � NB matrices A;B;C, and D such that
MnF ¼
A B
C D

� �
F
G

� �
: ð47Þ
Then from (44) and (45) and the definition of the interfacial point forces (35) and (36), it follows that
Aij

Cij

� �
	 TðXi � XjÞ; ð48Þ
and
Bij

Dij

� �
	 UðXi � XjÞ: ð49Þ
The domain of both T and U is X. To expedite the calculation we precompute both functions on the Eulerian grid GX. The
value of T or U at any other point is obtained via simple linear interpolation from the corresponding grid values. Thus, each
evaluation of T or U costs only Oð1Þ and consequently, we construct in this manner the entire matrix representation ofMn at
an optimal OðN2

BÞ cost. Table 2 gives the CPU time to obtain the matrix in units of FE/BE, when NB ¼ 2N.
CPU time in FE/BE units to construct the matrix approximation to Mn for given NB ¼ 2N.

256 512 1024

construction 1/3.3 1/1.8 1/2.5

7144 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
5.2. Error estimate for approximation of the matrix representation of Mn

We proceed to obtain an error estimate for the above approximation ofMn. In what follows we assume the periodic do-
main is X ¼ ½0;1� � ½0;1� and consider a uniform grid GX with grid size h ¼ 1=N. We first require a bound on Gh, the Green’s
function used in (34). Given the vector fields
g1ðxÞ ¼
ð1=h2

;0Þ if x ¼ 0;
ð0;0Þ otherwise;

(
ð50Þ
and
g2ðxÞ ¼
ð0;1=h2Þ if x ¼ 0;
ð0;0Þ otherwise;

(
ð51Þ
defined for x 2 GX;Gh is a 2� 2 matrix valued function given by
GhðxÞ ¼
u1ðxÞ u2ðxÞ
v1ðxÞ v2ðxÞ

� �
; ð52Þ
where ðu1;v1Þ ¼ Lhðg1Þ and ðu2;v2Þ ¼ Lhðg2Þ.
We make the following claims about the four components of Gh. In the estimates that follow, C stands for a generic con-

stant, not necessarily the same.

Lemma 5.1. If Dt is proportional to h then the sup norm of each component of Gh over GX is bounded asymptotically by
CDt�1 logðh�1Þ, where C is a constant.

Proof. By definition of the fluid operator Lh, we have
ðu1;v1Þ ¼ ðI � mDtLhÞ�1Phg1: ð53Þ
The right hand side of (53) can be readily obtained in Fourier space. Let eGX ¼ fx ¼ ðx; yÞT : x 2 GX; x – 1; y – 1g and
GF ¼ fk ¼ ðk1; k2ÞT : jk1j; jk2j < N=2g. Then, we can define the discrete Fourier transform (DFT) of a doubly periodic function
F on eGX by
bF ðkÞ ¼X

x2eGX

FðxÞe�2pix�k ð54Þ
for k 2 GF with discrete Fourier inverse
FðxÞ ¼ 1
N2

X
k2GF

bFðkÞe2pix�k ð55Þ
for x 2 eGX. Then, for k 2 GF and jkj– 0, direct calculation gives us:
jdPhg1ðkÞj ¼ jĝ1ðkÞ � jbDhj�2 bDh
bDh � ĝ1ðkÞj 6 jĝ1ðkÞj ¼ 1=h2 ð56Þ
and we set the zero mode ðk ¼ 0Þ of the discrete projection to zero. Using (53) together with the inverse DFT (55) we have
ku1k1 ¼
1

N2 max
x2GX

X
k2GF

e2pix�kû1ðkÞ
�����

����� 6 1
N2

X
k2GF

1=h2

1� mDtcLhðkÞ

�����
�����; ð57Þ
Here the Fourier symbol of the five-point Laplacian Lh can be written as
�bLhðkÞ ¼
1

h2 4� 2 cosð2pk1hÞ � 2 cosð2pk2hÞ½ � ¼ 4

h2 sin2ðpk1hÞ þ sin2ðpk2hÞ
h i

: ð58Þ
Furthermore, using the inequality sinðx=2ÞP x=p for 0 6 x 6 p and bounding the resulting sum by an integral, we get
ku1k1 6
X
k2GF

1

1þ 16mDtjkj2
6 C

Z ffiffi
2
p

2h

0

1
1þ 16mDtr2 rdr ¼ C

16mDt
log½1þ 8mDth�2�: ð59Þ
Thus, if Dt / h then ku1k1 6 CDt�1 logðh�1Þ for sufficiently small h. The remaining three components of Gh can be shown
to have the same type of bound via similar calculations. h

Consider now two fiber points, say X1 and X2, with a point horizontal force on X2 of unit magnitude. If we spread this
force we obtain a vector field ðf ;0Þ where
f ðxÞ ¼ dhðx� X2ÞhB: ð60Þ

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7145
Substituting this vector field into our fluid solver we obtain ðu;vÞ ¼ Lhðf ;0Þ, where
uðxÞ

X

x22GX

u1ðx� x2Þdhðx2 � X2Þh2hB; ð61Þ
and u1 is one of the components of the discrete Green’s function (52). The interpolated velocity of u at X1 is
uðX1Þ

X

x12GX

uðx1Þdhðx1 � X1Þh2
: ð62Þ
The value A1;2
 auðX1Þ is exactly the horizontal displacement of X1 induced by a unit horizontal force on X2, where
a ¼ ðDtÞ2=q as before. A1;2 is one of four entries in the matrix representation of Mn relating forces at X2 to displacement
at X1. We will focus only on A1;2. The remaining three values may be analyzed in a similar manner.

We dub our approximation to A1;2 by eA1;2. We obtain our approximation by shifting both X1 and X2 an equal amount such
that X2 lies exactly on an Eulerian intersection. That is we shift by r 2 ½�h=2;h=2Þ � ½�h=2; h=2Þ such that X2 þ r 2 GX. We
then proceed as before, starting with a unit horizontal force at X2 þ r. Spreading this force results in a vector field with x-
component given by
~f ðxÞ ¼ dhðx� X2 � rÞhB: ð63Þ
Setting ð~u; ~vÞ ¼ Lhð~f ;0Þ we have
~uðxÞ

X

x22GX

u1ðx� x2Þdhðx2 � X2 � rÞh2hB: ð64Þ
Finally we obtain our proposed approximation via eA1;2
 a~uðX1 þ rÞ where
~uðX1 þ rÞ

X

x12GX

~uðx1Þdhðx1 � X1 � rÞh2
: ð65Þ
Let Mn be the exact matrix representation ofMn and eMn be the approximate matrix representation ofMn arrived at via
the methods given above. We are then in a position to state an estimate for the error kMn � eMnk1.

Theorem 5.1. kMn � eMnk1 6 Ch2 log h�1 when both Dt and hB are proportional to h and where C is a constant.

Proof. Using (61) and (62), the fact that A1;2
 auðX1Þ, and (64) and (65) we have
A1;2 � eA1;2 ¼ a
X

x1 ;x22GX

u1ðx1 � x2Þ½dhðx1 � X1Þdhðx2 � X2Þ � dhðx1 � X1 � rÞdhðx2 � X2 � rÞ�h4hB; ð66Þ
hence,
jA1;2 � eA1;2j 6 aku1k1
X

x1 ;x22GX

½dhðx1 � X1Þdhðx2 � X2Þ þ dhðx1 � X1 � rÞdhðx2 � X2 � rÞ�h4hB ¼
2ðDtÞ2

q
ku1k1hB; ð67Þ
where we have made use of the identity
P

x2GX
dhðx� yÞh2 ¼ 1 for any shift y 2 X in the last step of the estimate. Suppose that

Dt / h and hB / h, then from Lemma 5.1 we get that jA1;2 � eA1;2j 6 Ch2 log h�1, for sufficiently small h.
It is straightforward to extend the above estimate to all entries in the matrix Mn � eMn. This gives the desired

kMn � eMnk1 6 Ch2 log h�1. h

This error for the proposed, approximated matrix eMn is asymptotically smaller than the OðhÞ error of the IB Method for
points within a distance OðhÞ of the immersed boundary [12]. Thus, the approximated matrix eMn can be use without any
deterioration of the overall accuracy of the IB Method.

We calculate numerically both matrices and then compute the maximum norm between their difference for the standard
example of a relaxing elliptical bubble as described in Section 6. A log–log graph of the norm with respect to h is given in
Fig. 1. Here, we have fixed Dt ¼ h and NB ¼ 2N. We see that the error is approximately Oðh2Þ, a close match to the analytic
result.

5.3. Additional considerations and optimizations concerning eMn

There are a few additional optimizations possible when constructing eMn, the matrix representation ofMn. Note first that
on a square domain X we have via symmetry that U ¼ T, so only a single lookup table is required. For rectangular or other-
wise irregular grids this symmetry does not hold, we do however have other symmetries; most importantly TðxÞ ¼ Tð�xÞ
and UðxÞ ¼ Uð�xÞ. These symmetries imply that the matrix of Mn is symmetric. This observation reduces the cost of com-
puting the matrix roughly by half. The cost could be reduced further if interpolation were not used between grid points for
evaluating values of T and U. Unfortunately, the resulting error introduced in the simulation would be significant. A simple
compromise is to use linear interpolation when calculating TðxÞ if jxj is small and direct lookup otherwise. This is inexpen-
sive, with only OðNBÞ interpolations needed, because most fiber points are distant from each other, as well as accurate, be-

Fig. 1. Log–log plot of kMn � eMnk1 with Dt ¼ h. The continuous line is a fit with a line of slope 2.

7146 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
cause T and U and decay rapidly away from the origin. Alternatively, we could employ an adaptive mesh on which to cal-
culate T and U, taking a dense grid around the origin where most of the structure lies. This would allow us to use direct look-
up for all entries ofMn without much loss of accuracy. We do not pursue these strategies here and only utilize the symmetry
of the matrix of Mn to expedite the construction as was done in the costs given in Table 2.

A further reduction in cost can be had by only computing part ofMn. Consider the case whereAhB is linear, represented by
the matrix AhB

, and suppose Mn is the matrix ofMn. We approximate Mn with a banded matrix M1
n and let M2

n ¼ Mn �M1
n. Our

linear system then looks like
Xnþ1 ¼ M1
nAhB

Xnþ1 þM2
nAhB

Xnþ1 þ bn
: ð68Þ
We approximate M2
nAhB Xnþ1 	 M2

nAhB Xn. Utilizing this and rewriting we have
Xnþ1 � Xn ¼ M1
nAhB
ðXnþ1 � XnÞ þMnAhB

Xn þ bn
: ð69Þ
We may absorb the term MnAhB Xn into the definition of bn leaving the system
Xnþ1 � Xn ¼ M1
nAhB
ðXnþ1 � XnÞ þ ~bn; ð70Þ
where
~bn ¼ DtS�nLh
Dt
q
SnAhB

ðXnÞ þ un � Dtun � rhun

� �
: ð71Þ
Solving (70) and (71) yields a stable update provided that the width of the band comprising M1
n is large enough. Typically,

the width of the band must increase as stiffness increases to maintain stability. This banded matrix approach can lead to a
significant speed-up in calculating the system’s matrix as well as in matrix–vector multiplication if sparse data structures are
used. This is particularly helpful for problems with very large physical domains, where the influence of one immersed fiber
onto a distant one is drastically diminished by their large separation. For instance, in the 2D model of a heart valve presented
in Section 8, much of the horizontal boundary (walls) has little impact on the fiber comprising the valve. The walls, modeled
with tethered nodes, are not the main contributors to the high stiffness of the problem. The corresponding entries of Mn

relating these two horizontal parts of the immersed boundary could be held at zero if we employ (70) and (71) to determine
the next configuration.

6. Case I: an initially elliptical drop with linear AhB

We consider as our first example what has been the canonical test for methods intended to remove the severe stiffness of
the IB method. This is the case of a closed, continuous membrane Xðs; tÞ with a force distribution given by AðXÞ ¼ rXss,
where r is a (large) constant. We take our domain as X ¼ ½0;1� � ½0;1� with periodic boundary conditions and we fix
l ¼ q ¼ 1. Initially, we have an elliptical drop and zero velocity and the drop relaxes toward the equilibrium configuration.
Fig. 2 shows the initial and final configurations of the interface.

We discretize AðXÞ as
ðAhB XÞi ¼
1

h2
B

Xiþ1 � 2Xi þ Xi�1ð Þ; ð72Þ

Fig. 2. Initial configuration of fiber in bold and final rest configuration in dotted line.

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7147
where we have omitted the parentheses in the discrete force operator AhB to emphasize that it is linear. Thus, Peskin’s semi-
implicit discretization with lagged-operators produces the linear system
Xnþ1 ¼MnAhB
Xnþ1 þ bn

; ð73Þ
where b is given by (26), to be solved at each time step. Equivalently, we have
ðI �MnAhB
ÞXnþ1 ¼ bn

; ð74Þ
where I is the identity operator. Note that I �MnAhB is symmetric and non-singular. Indeed, the argument in [4] for
I � S�nPhSnAhB

can be applied to this case as well, for suppose
ðI �MnAhB
ÞX ¼ 0; ð75Þ
then multiplying both sides of (75) by AhB and taking the inner product with X we get
0 ¼ �ðX;AhB
XÞB þ ðX;AhB

MnAhB
XÞB ¼ �ðX;AhB

XÞB þ ðAhB
X;MnAhB

XÞB: ð76Þ
Both terms in the left hand side of (76) are non-negative. Therefore, it follows that each has to be equal to zero and
consequently
ðX;AhB
XÞB ¼ 0: ð77Þ
This implies that AhB X ¼ 0 [4] and hence from (75) we obtain that X ¼ 0. Thus (74) has a unique solution.
If the full matrix representation Mn ofM is available (see the previous section for how to expedite its construction) it is

easy to construct simple iterative schemes to solve (74). For example, denoting the diagonal component of Mn by M0
n, letting

M00
n ¼ Mn �M0

n, and denoting by AhB the matrix representation of AhB we can write an iteration of weighted Jacobi type:
Xnþ1;kþ1 ¼ ð1� aÞXnþ1;k þ aðI �M0
nAhB
Þ�1ðbn þM00

nAhB
Xnþ1;kÞ: ð78Þ
When underrelaxed, 0 < a < 1, this iteration converges well, typically requiring on the order of 10 iterations to obtain
adequate residuals (on the order of the truncation error) and to maintain stability. Along the same lines, one can also con-
sider a weighted Gauss–Seidel method of the form:
Xnþ1;kþ1
i ¼ ð1� aÞXnþ1;k þ a

1
Bii

bn
i �

X
j<i

BijX
nþ1;kþ1
j �

X
j>i

BijX
nþ1;k
j

 ! !
; ð79Þ
for i ¼ 1;2; . . . ;2NB, where B ¼ ðI �MnAhB Þ and 0 < a < 1. While (79) appears to converge slower than (78) in the numerical
experiments it does, however, perform well as a smoother.

The most efficient and robust approach we found to solve (74) for this test problem is a standard algebraic multigrid. Sup-
pose for simplicity that NB ¼ 2m for some natural number m. We can then form a collection of Lagrangian grids Gl, l ¼ 1; . . . m,
with number of nodes equal to 2m;2m�1; . . . ;2;1. Our original grid corresponds to the first level, l ¼ 1, with coarser grids com-
ing afterwards. For a given level l of the multigrid hierarchy, the prolongation operator P l takes a fiber Xlþ1 at level lþ 1 and
adds a node between each pair of consecutive nodes equidistant between each. As a matrix, Pl has dimensions
2 � 2m�lþ1 � 2 � 2m�l and has the form

7148 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
P l ¼

1 0 0
:5 :5 0 . . .

0 1 0
0 :5 :5

..

. . .
.

0BBBBBB@

1CCCCCCA: ð80Þ
Restriction operators are taken to be the transposes of prolongation operators. Calling K1 ¼ ðI �MnAhB Þ we define recur-
sively Kl ¼ PT

l�1Kl�1Pl�1. The Gauss–Seidel iteration (79) provides a good smoother for the multigrid. All together, a single
restriction, prolongation, and smoothing step looks like

� Given a guess Xl to the linear problem
KlXl ¼ bl: ð81Þ
calculate the residual and restrict it to the next lowest level
~rlþ1 ¼ PT
l ðbl �KlXlÞ: ð82Þ
� Find the correction on the coarse grid by solving or approximating
Klþ1Xlþ1 ¼ ~rlþ1: ð83Þ
� Correct our initial guess
Xl Xl þ P lXlþ1: ð84Þ
� Smooth the high frequency errors in Xl via an underrelaxed Gauss–Seidel.

The number of iterations needed depends more on the desired degree of accuracy than a requirement for stability. Typ-
ically a single iteration of a full multigrid step with one V-cycle per level is sufficient to maintain stability. Computationally,
it appears to be preferable to use the approximate solution Xnþ1 we obtain from (74) as the updated fiber position rather than
applying (11) directly. This is because small errors in the solution to (74) are amplified when AhB acts on it.

6.1. Numerical results

We present now the numerical results for the above test model. The method discussed has five primary costs. First, when
constructing the implicit system (74) we must calculate bn via a fluid solve, with a cost of roughly one FE/BE. Second, the cost
of computing Mn is roughly one half FE/BE. Third is the cost of initializing the multigrid solver, i.e. calculating the coarse rep-
resentations of Mn on the various levels of our grid. Use of sparse data structures is critical here to maintain OðN2

BÞ cost.
Fourth, is the cost of our iterations to solve the linear system. Because matrix–vector multiplication is significantly cheaper
than FE/BE (see Table 1) a full multigrid step can be much more economical than one FE/BE and this advantage grows as N
increases. The final cost is in computing unþ1 once Xnþ1 is known. This step involves another fluid solve with a cost of roughly
one FE/BE. We will see that the sum of these costs for the semi-implicit method results in a single time-step that costs
approximately 4 FE/BE. However, the stability restraint on Dt for the FE/BE scheme for a stiff problem like this one is orders
of magnitude smaller than that required by the semi-implicit discretization. Thus, our proposed approach yields a much
superior computational strategy.

We set the elasticity constant r ¼ 105 and take NB ¼ 2N. The initial configuration of the fiber is an ellipse given by
Xðs;0Þ ¼ ð0:5þ 0:3 cosð2pshBÞ;0:5þ 0:2 sinð2pshBÞÞ; ð85Þ
for s 2 ½0;1�.
As time elapses, the interfacial tension drives the ellipse toward a circular (cylindrical) configuration. The velocity of the

fiber can reach roughly 500 units before it slows down toward equilibrium. Taking a standard length to be the geometric
mean of our radii, 0.245, we calculate the Reynolds number of our fluid to be approximately 100.

As a reference for comparison, for fiber-explicit simulations we use the FE/BE scheme with Dt as large as stability permits,
which we find to be approximately Dt ¼ 0:00025h. For our implicit scheme we make use of a linear multigrid with stopping
criteria of krkk1 < 30Dt, where rk is the residual bn � ðI �MnAhB ÞX

nþ1;k at the kth iterate and k � k1 is the sup norm. Here Dt is
chosen to comply with the CFL condition as the convection term is treated explicitly. With a conservative estimate for the
maximum velocity, the time-step is given approximately by Dt ¼ 0:02h.

The results of multiple simulations with varying N for the explicit and implicit methods are given in Table 3. The rows in
the table correspond to identical simulation runs with different N. The columns under the title Explicit relate data from the
FE/BE simulations, whereas the Implicit columns relate data from the implicit simulations. The two columns marked Average
give the average CPU time of a single timestep. The columns marked Total give total CPU time for the entire simulation, up to
a simulation time of T ¼ 0:005.

Table 3
Elliptical drop relaxation for Navier–Stokes. The average CPU time per time-step and the total CPU time up to a simulation time of T ¼ 0:005 is given. Dt is the
time-step taken and is the maximum allowed while maintaining stability.

N Explicit Implicit

Dt Average Total Dt Average Total

128 1:95� 10�6 0.03 73.35 1:17� 10�4 0.10 4.34
256 9:76� 10�7 0.14 730.21 7:81� 10�5 0.55 35.06
384 6:51� 10�7 0.34 2613.19 5:21� 10�5 1.24 118.98
512 4:87� 10�7 0.63 6491.95 3:91� 10�5 2.34 299.10

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7149
We see in Table 3 that the implicit scheme costs approximately 4 times as much per time-step than FE/BE. However, be-
cause Dt can be taken up to the CFL restraint, the scheme is roughly 20 times faster than the explicit scheme in terms of total
CPU time. The performance of the semi-implicit approach is limited by the presence of large convection (relative to viscous
dissipation) but the method still achieves a significant gain over the explicit alternative. Of course, one could employ a suit-
able implicit discretization of the convection terms to remove the CFL constraint. Effective options in this context have been
proposed by Mori and Peskin [9] and Hou and Shi [7]. We do not pursue this here as our intent is to focus on the treatment of
the tension forces. Alternatively, if we consider Stokes flow the semi-implicit method is no longer limited by a CFL restriction
and we can take arbitrarily sized time-steps while maintaining stability. We compare the performance of the two methods
for Stokes flow in Table 4.

In these simulations we have increased the total simulation time to T ¼ 0:05. This simulation time requires unreasonable
amounts of CPU time when using the explicit method. We estimate the total CPU time for these longer, explicit simulations
by calculating the average CPU time of a single timestep and multiplying by the total number of timesteps. We use an aster-
isk here and in following tables to denote values based on these extrapolated values.

While Dt for our implicit simulation can be chosen with disregard to stability, care must still be taken to ensure accuracy.
Here, we only require that Dt 6 h to maintain the overall OðhÞ accuracy of the method.

7. Case II: an initially elliptical drop with nonlinear AhB

We consider now the case of the simple, initially elliptical membrane with a nonlinear force and detail how to adapt the
method from the previous linear case.

We follow Mori and Peskin in [9] for the setup of this nonlinear AhB example. At the continuous level, the fiber force dis-
tribution is given by
Table 4
Ellipse
taken. F
held co

N

128
256
384
512

* Deno
F ¼ @

@s
ðTtÞ; ð86Þ
where tðs; tÞ is the tangential unit vector to Xðs; tÞ and Tðs; tÞ is the tension given by
Tðs; tÞ ¼ @X
@s
ðs; tÞ

���� ����þ @X
@s
ðs; tÞ

���� ����2: ð87Þ
To discretize this interfacial force we introduce the following difference operators for a function f defined over GB:
Dþs f ðsÞ ¼ f ðsþ 1Þ � f ðsÞ
hB

; ð88Þ

D�s f ðsÞ ¼ f ðsÞ � f ðs� 1Þ
hB

: ð89Þ
relaxation for Stokes flows. The average CPU time per timestep and the total CPU time up to a simulation time of T ¼ 0:05 is given. Dt is the timestep
or the explicit scheme this is the maximum allowed while maintaining stability. The implicit scheme is unconditionally stable; the timestep taken is
nstant as N varies.

Explicit Implicit

Dt Average Total Dt Average Total

1:95� 10�6 0.03 683.96 0.001 0.09 9.34
9:76� 10�7 0.15 7410.50 0.001 0.53 53.08
6:51� 10�7 0.35 26555.30* 0.001 1.24 123.86
4:87� 10�7 0.71 72669.41* 0.001 2.32 232.05

tes an extrapolated value.

7150 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
We then define the discrete force distribution as
Table 5
Total CP
given N

N

64
128
256
512
F ¼ Dþs ðjD�s Xj þ jD�s Xj2Þ D�s X
jD�s Xj

� �
: ð90Þ
Severe stiffness in this model is manifested when the interfacial elastic force is much larger than the viscous forces. Fol-
lowing Mori and Peskin [9] we set q ¼ 1 and either l ¼ 0:05 or l ¼ 0:005. As before the domain is X ¼ ½0;1� � ½0;1�which we
discretize as Xh, an N � N uniform Eulerian grid. As in the linear case, the initial velocity of the fluid is zero everywhere. The
fiber’s initial configuration is given by
Xðs;0Þ ¼ 1
2
þ 1

3
cos 2pshBð Þ;1

2
þ 1

4
sin 2pshBð Þ

� �
: ð91Þ
With our implicit strategy we attempt to solve at each time-step the nonlinear system (23)
Xnþ1 ¼MnAhB
ðXnþ1Þ þ bn

;

whereMn and bn are as in the linear case. We could simply approximate AhB linearly and solve the resulting linear system.
This is easily accomplished because the Jacobian J of AhB is negative semidefinite, hence I �MnJ is positive definite. Such
linear approximation is simple and reasonably robust but not as stable as the implicit scheme with full nonlinear term. This
linear approximation is the method employed by Mori and Peskin [9] for their first order scheme. However, with our eco-
nomical computational approach we can afford the extra stability (while maintaining accuracy) by solving the nonlinear sys-
tem (23) via Newton iterations. Specifically, at each time-step we perform Newton iterations until the sup norm of the
residual is less than 10�4. This typically requires only 2 or 3 iterations. Note that a single iteration per timestep would be
identical to the linear approximation used by Mori and Peskin. We expedite further the computation by approximating
the solution to the linear system at each one of Newton’s iteration with 3 Multigrid cycles.

7.1. Numerical results

We choose this nonlinear test problem following Mori and Peskin [9] to have their results as a reference. However, there
is a slight difference in the model in addition to the different discretizations employed; Mori and Peskin use an immersed
fiber with finite mass while our own fiber is neutrally buoyant. We present the results from our numerical experiments
in a format similar to that presented in [9] to facilitate comparisons.

Let NT be the number of timesteps taken, with total simulation time fixed at 1. We fix NB ¼ 2N as before. Table 5, for
l ¼ 0:05, and Table 6, for l ¼ 0:005, summarize the total computational cost in units of FE/BE’s. The total CPU time for
the same cases is displayed in Tables 7 and 8, respectively. In all four tables the columns under FE/BE hold the explicit result
while the columns under NT ¼ 8 and NT ¼ 16 hold the implicit results, with NT as specified.

As noted in [9], the semi-implicit method becomes more efficient compared to the explicit (FE/BE) scheme as N increases
and l decreases (more stiffness). For NT ¼ 8 and N ¼ 512 the proposed semi-implicit strategy is about 45 times faster than
the explicit approach in the case of l ¼ 0:05 and about 90 times faster for l ¼ 0:005. In contrast, the fully implicit approach
in [9] gives cost ratios in the range 12–16 for the same parameters.

8. Case III: a model of a heart valve

8.1. The model

We turn now to a more challenging application of the IB Method in which there are rigid immersed structures, tethered
points, and crossed links. We consider a 2D model of a rigid valve immersed in blood flowing through an artery. The valve is
indirectly restricted in motion by two hinges but is allowed to rotate. The valve, artery walls, and hinges will all be modeled
as immersed springs. The flow-structure interaction will be captured via the IB Method.

We select the computational domain to be X ¼ ½0;2� � ½0;1� with periodic boundary conditions and discretize it with a
2N � N uniform grid. The geometry of the problem is represented in Fig. 3 and a detailed depiction of the valve’s linked struc-
ture is shown in Fig. 4. Table 9 details the number of fiber points necessary to construct the geometry given the Eulerian
resolution N. The top and bottom of the artery walls include cushions in the shape of two hills. We simulate a horizontal
U cost for the nonlinear ellipse model with l ¼ 0:05. Values given are total CPU time divided by average CPU time of a single FE/BE timestep for the
.

FE/BE NT ¼ 8 NT ¼ 16

166 38.2 75.5
500 49.7 89.7
1333 53.0 97.2
2666 59.3 92.6

Table 6
Total CPU cost for the nonlinear ellipse model with l ¼ 0:005. Values given are total CPU time divided by average CPU time of a single FE/BE timestep for the
given N.

N FE/BE NT ¼ 8 NT ¼ 16

64 333 83.5 112.4
128 1000 74.8 113.1
256 2666 71.7 112.6
512 5333 59.2 101.9

Table 7
Total CPU time for the nonlinear ellipse model with l ¼ 0:05.

N FE/BE NT ¼ 8 NT ¼ 16

64 2.94 0.67 1.33
128 20.89 2.08 3.75
256 227.85 9.05 16.59
512 1930.62 42.94 67.02

Table 8
Total CPU time for the nonlinear ellipse model with l ¼ 0:005.

N FE/BE NT ¼ 8 NT ¼ 16

64 5.31 1.33 1.79
128 42.06 3.14 4.75
256 455.11 12.24 19.22
512 3823.40 42.45 73.10

Table 9
The number of Lagrangian nodes NB and the maximum stable timestep Dt for a FE/BE method are given for increasing values of N.

N NB Dt

128 520 1:15� 10�7

256 1053 2:89� 10�8

384 1592 1:29� 10�8

512 2122 7:24� 10�9

Fig. 3. Configuration of heart valve model. Larger nodes represent tether points. 1: Valve; 2: Cushions; 3: Hinges; 4: Artery wall.

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7151
flow through the artery by adding a forcing vector f j;k ¼ ðv flow;0Þ to the right hand side of (9), where in general v flow may be
time dependent. This changes the explicit term bn in our implicit system to
bn ¼ Xn þ DtS�nLh un � Dtun � rhun þ Dt
q

f
� �

: ð92Þ
All nodes in the wall and the two hinges are modeled as tethers, with one end of the tether fixed for all time. If Xi is a
tethered point with base given by Xi then the force generated by the tether is given by
f i ¼ �kiðXi � XiÞ; ð93Þ

Fig. 4. Top: A fine grid approximation to the valve, showing only linkage. Bottom: ‘x’s mark the prolongation of a coarse valve marked in ‘o’.

7152 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
where ki is the spring constant. For the body of the heart valve we will use springs between nodes. Suppose Xi is connected to
multiple other nodes. If Xi is connected to Xj then let ki;j and Li;j be respectively the spring constant and resting length of the
spring connecting them. If no connection exists between Xi and Xj then take ki;j to be zero. The force at Xi then is given by
f i ¼
XNB

j¼1

�ki;j
Xi � Xj

jXi � Xjj
jXi � Xjj � Li;j
� �

: ð94Þ
Note that the force operator (72) employed for the elliptical membrane problem is exactly the force given by (94) for a
loop of fiber points connected sequentially by springs with suitable spring constants and zero resting length. However, for
our valve model we require non-zero resting lengths to preserve the structure and as a consequence we end up with a non-
linear force density. Additionally, the problem is severely stiff. To maintain the rigidity of a solid body, we find that the spring
constants must be Oð109h�2Þ. Similarly, for the tether points representing the artery walls, the spring constants must also be
very large to portray the tautness of the biological fibers. Furthermore, because the forcing flow acts to bend the valve as it is
penned between its hinges, larger values of v flow require larger spring constants to preserve the structure. To illustrate the
stiffness, a time integration of the equations of motion with an explicit treatment of the interfacial force and with a modest
spatial resolution ðN ¼ 256Þ requires the time-step to be Oð10�7Þ.

Removing this stiffness for this more prototypal IB Method problem is considerably more challenging than in the case of
the simple elliptical fiber. The implicit system we would like to solve is still given by (23):
Xnþ1 ¼MnAhB
ðXnþ1Þ þ bn

:

As noted above, due to the nonzero resting lengths of the springs comprising the valve, AhB is nonlinear. Moreover, unlike
the case of the elliptical interface with nonlinear force density, the Jacobian J of AhB

is not semidefinite and the resulting ma-
trix I �MnJ can be shown to lack definiteness as well.

The breakdown of the definiteness of J can be seen in a very simple case. Consider four immersed boundary points at (1,0),
(0,1), (�1,0), (0,�1), forming a square with side lengths

ffiffiffi
2
p

and with links connecting the perimeter of the square. We vary
the resting length l of the connecting springs and compute the eight eigenvalues of the resulting force density’s Jacobian. The
results are plotted in Fig. 5. We see that as the resting length approaches and surpasses the side length of the square the
Fig. 5. Eigenvalues for the Jacobian of a fiber forcing function for four points linked as a square with varying resting length.

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7153
Jacobian loses its negative semi-definiteness. This seems to be generic for most immersed structures. For our 2D valve model,
we take the resting length to be the starting length of the links comprising the valve. Thus, we lose immediately negative
semi-definiteness once we perturb the valve structure.

Due to the lack of positive definiteness of I �MnJ the Conjugate Gradient Method does not converge. The Biconjugate Gra-
dient Method converges but may take in excess of 100 iterations to attain a satisfactory residual. A major obstacle in accel-
erating convergence is that the natural preconditioner I �M0

nJ (recall M0
n is the diagonal part of Mn) does not capture well the

dynamics of this system. Indeed, a Jacobi iteration analogous to (78) has very poor convergence, requiring strong underre-
laxation and thousands of iterations. Without adequate smoothers, an efficient multigrid for the linear system in Newton’s
iteration is not a viable option. Smoothers for the nonlinear system (23) were likewise difficult to uncover, seemingly ruling
out a nonlinear multigrid. We propose next a very different approach, which consists of splitting the problem to take simul-
taneous advantage of the fast convergence of Newton’s method and the efficiency of multigrid.

8.2. Solving the implicit system

Perhaps the simplest iterator for (23) is the fixed point iteration given by
Xnþ1;kþ1 ¼ MnAhB
ðXnþ1;kÞ þ bn

: ð95Þ
However, this method fails spectacularly. This is not entirely surprising. If our initial guess is Xnþ1;0 ¼ Xn then Xnþ1;1 is the
explicit update provided by the FE/BE scheme which is unstable for practical Dt. Additional iterations of (95) exacerbate the
instability: small errors in Xnþ1;k are amplified enormously byAhB resulting in large errors in Xnþ1;kþ1. As remarked in the con-
text of the elliptical interface case, this is why it is preferable to use the approximate solution to (74) as the updated con-
figuration Xnþ1 rather than employing (21).

The eigenvalues of J are at least on the order of the spring constants comprising our valve. It should seem natural to take
advantage of this by reversing the fixed point iteration (95). Consider the alternative fixed point iteration
MnFkþ1 ¼ Xnþ1;k � bn
;

AhB
ðXnþ1;kþ1Þ ¼ Fkþ1:

(
ð96Þ
First, we solve for Fkþ1, the force distribution that would move the fiber from Xn to Xnþ1;k after a single timestep. The linear
system we must solve only involves the linear positive definite operator Mn, thus we can efficiently solve it using (lin-
ear)multigrid. Second, we determine what configuration Xnþ1;kþ1 gives rise to this force through AhB . In many applications
there is a unique Xnþ1;kþ1 such that AhB

ðXnþ1;kþ1Þ ¼ Fkþ1. For the current problem this is not the case.
To see this note that valve is modeled as a neutrally buoyant object, detached from any fixed points, and the internal

forces generated by perturbations in the valve’s structure are unaffected by translation. More precisely let GV be all indices
l such that Xl is a fiber point belonging to the valve. We consider then two translation vectors V1 and V2 given by
V1
l ¼

ð1;0Þ if l 2 GV ;

ð0; 0Þ otherwise;

	
ð97Þ

V2
l ¼

ð0;1Þ if l 2 GV ;

ð0; 0Þ otherwise:

	
ð98Þ
V1 and V2 are horizontal and vertical translation vectors, Xþ V1 representing the same configuration as X with the valve
shifted right by one unit. Shifting has no influence on the force density,
AhB
ðXþ a1V1Þ ¼ AhB

ðXþ a2V2Þ ¼ AhB
X; ð99Þ
where a1 and a2 are arbitrary scalars. Thus, AhB is not injective and we may not have a unique solution to (96). In fact, AhB is
not surjective either so (96) may have no solution at all. This follows physically from conservation of linear momentum and
angular momentum: AhB cannot directly generate forces that move or rotate the valve. Translation and rotation can only be
introduced via the fluid interaction.

To analyze rotation we introduce the operator Rh which takes in a configuration X and returns the configuration obtained
by rotating the valve by h about some fixed point. This point of rotation is arbitrary and we take it to be the center of the
valve at the previous time-step:
xc ¼
ðXn;V1ÞB
ðV1;V1ÞB

;
ðXn;V2ÞB
ðV2;V2ÞB

 !
: ð100Þ
We define also
V3ðXÞ ¼ @

@h
RhðXÞ: ð101Þ
We may equivalently define V3 via

7154 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
V3
l ¼

ð�Yl þ yc;Xl � xcÞ if l 2 GV ;

ð0;0Þ otherwise;

	
ð102Þ
where Xk ¼ ðXk;YkÞ and xc ¼ ðxc; ycÞ. V3 is the Jacobian of Rh. Note that V3 depends on a configuration X. We use the notation
V3ðXÞ to emphasize this dependence.

The vectors V1;V2;V3 represent points outside the image of AhB
associated with translation and rotation. Then, we have

that there exist solutions to (96) only when Fkþ1 does not act to translate or rotate the valve. That is, a vector F lies in the
image of AhB

only when
ðF;VjÞB ¼ 0 for j ¼ 1;2;3: ð103Þ
Indeed, consider first the simplest case of only two immersed fiber points
X ¼
ðx1; y1Þ
ðx2; y2Þ

� �
; ð104Þ
connected with a single link. Then, the force they generate is
F ¼ T
ðx2 � x1; y2 � y1Þ
ðx1 � x2; y1 � y2Þ

� �
; ð105Þ
for some tension scalar T. The rotation vector about the origin is simply
V3 ¼
ð�y1; x1Þ
ð�y2; x2Þ

� �
: ð106Þ
We have then that
ðF;V3ÞB ¼ �y1ðx2 � x1Þ þ x1ðy2 � y1Þ � y2ðx2 � x1Þ þ x2ðy1 � y2Þ ¼ 0: ð107Þ
A similar calculation shows that ðV1; FÞB ¼ ðV
2; FÞB ¼ 0. For our more complicated valve structure we simply have a sum-

mation of such forces, thus the corresponding force density must satisfy (103) where F ¼ AhB
ðXÞ for any configuration X. In

general, an arbitrary vector F may not satisfy (103) and we would be unable to find a solution to (96). To remedy this we
must factor out those components outside the image of AhB . This is easier to do with the linearized AhB , its Jacobian, where
we may simply project onto the vector space free of the problematic vectors V1;V2;V3. These observations suggest the mod-
ified Newton iteration to approximately solve for Xnþ1;kþ1 in (96):
Xnþ1;kþ1;0 ¼ Xnþ1;k; JðXnþ1;kþ1;lÞðXnþ1;kþ1;lþ1 � Xnþ1;kþ1;lÞ ¼ PðFkþ1 �AhB
ðXnþ1;kþ1;lÞÞ;

n
ð108Þ
where
PðFÞ ¼ F�
X3

j¼1

VjðXnþ1;kÞðF;VjðXnþ1;kÞÞB; ð109Þ
is the projection operator onto rotation and translation free force distributions. Note that because each node in the valve is
linked to only a few other nodes, J is OðNBÞ sparse. We can solve systems involving J efficiently with various sparse solvers.
Additionally, the structure of J never changes throughout a simulation, though its values do, so we may make additional opti-
mizations in the sparse solver if desired.

Linear systems of the form JX ¼ PF are, strictly speaking, over determined by three degrees of freedom. To rectify this we
simply isolate three degrees of freedom in X and fix them. These variables must be associated with the valve but are other-
wise arbitrary. We could, for instance, fix the x and y component of a single node in the valve as well as the x component of
an additional node. Once fixed, we may proceed to solve for X such that JX ¼ PF is satisfied at all other free points. What is
important, however, is that iterations of (108) in such a manner will converge to an X that satisfies AhB X ¼ PF at all points,
even at those we fixed. In this sense we arrive at an updated configuration Xnþ1;kþ1 which satisfies (96) up to components
outside the image of AhB .

The sequence Xnþ1;0;Xnþ1;1;Xnþ1;2; . . . formed by iterations of (96) typically converges quadratically in the l2 norm. As an
aside, it is important to note that the iterative method (96) converges precisely because the standard fixed point iteration
(95) diverges. As we modify the parameters of our simulation, for instance, if we were to drastically decrease the spring con-
stants, then (95) may converge whereas (96) would diverge. There are situations with mixed large and small spring con-
stants where neither iteration converges. The crosslinks of our valve model is one such example. In the case of large
spring constants everywhere (96) converges rapidly and increasing the spring constants aids in the convergence.

The limit of our iterations is a stable update of the immersed boundary configuration but is not in general a solution to
(23). We need to reintroduce translation and rotation to correct for this discrepancy. We can achieve this in many different
ways. Perhaps the simplest method is to use the location and angle of the valve configuration obtained from an explicit up-
date. To accomplish this we may simply take our initial guess Xnþ1;0 for iterations of (108) to be

H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158 7155
Xnþ1;0 ¼ RhXn þ V1ðeX � Xn;V1ÞB þ V2ðeX � Xn;V2ÞB; ð110Þ
where
h ¼ ðeX � Xn � V1ðeX � Xn;V1ÞB � V2ðeX � Xn;V2ÞB;V
3ðXnÞÞB; ð111Þ
and
 eX ¼ Xn þMnAhB
Xn: ð112Þ
Here, we are taking the FE/BE predictor eX and extracting its location and angle. We then take the current configuration Xn

and modify the location and angle of the valve to match that in eX. After this, we may proceed to apply iterations of (108)
which will preserve the location and angle we extracted from the FE/BE predictor.

Other predictors may be employed as well. For instance we may rediscretize our problem on a coarser grid, solve for the
updated time-step, prolong the solution to the original fine grid and extract its gross properties.

Other predictors may involve higher order explicit updates eX or treating the valve as a true rigid body and predicting its
motion through rigid body motion.

8.3. Reintroducing translation and rotation iteratively

Many of the explicit predictors, such as those discussed above, behave quite satisfactorily and in conjunction with (96)
provide accurate and stable solutions to (23). In a number of applications this is sufficient. If we employ (108) after using
the initial guess (110) we can obtain efficiently an approximate solution to (23) within truncation error with just a few
iterations.

In the current application, however, extra care must be taken. The close proximity of the valve to its hinges can quickly
lead to unphysical collisions if small errors in translation propagate throughout the simulation. This proximity can also seri-
ously affect the behavior of an explicit predictor, leading to highly inaccurate translation and rotation. Of course, even exact
solutions to (23) with Dt large may still produce collisions due to inaccuracies and hence this problem is not intrinsic to the
proposed methodology.

We seek a means to reintroduce more accurately the three degrees of freedom we have removed in applying (96). Sup-
pose that we have a solution Xnþ1 to the original nonlinear system (23). We must have then
ðFnþ1;VjðXnþ1ÞÞB ¼ 0 for j ¼ 1;2;3; ð113Þ
where Fnþ1 is such that
MnFnþ1 ¼ Xnþ1 � bn
: ð114Þ
This is because if Xnþ1 solves (23) then Fnþ1 ¼ AhB Xnþ1 and AhB cannot generate forces with nonzero components along
Vj; j ¼ 1;2;3. Condition (113) suggests that before each iteration of (96) we simply shift and rotate Xnþ1;k such that
ðFkþ1;VjðXnþ1;kÞÞB ¼ 0 for j ¼ 1;2;3, whereMnFkþ1 ¼ Xnþ1;k � bn as before. This can be approximately accomplished by finding
ða1; a2Þ and h, a translation vector and an angle, such that for j ¼ 1;2;3
ðM�1
n ðX

nþ1;k þ a1V1 þ a2V2 þ hV3ðXnþ1;kÞ � bnÞ;VjðXnþ1;kÞÞB ¼ 0: ð115Þ
Or, equivalently,
ðW1;V1ÞB ðW2;V1ÞB ðW3;V1ÞB
ðW1;V2ÞB ðW2;V2ÞB ðW3;V2ÞB
ðW1;V3ÞB ðW2;V3ÞB ðW3;V3ÞB

264
375 a1

a2

h

264
375 ¼ � ðFkþ1;V1ÞB

ðFkþ1;V2ÞB
ðFkþ1;V3ÞB

2664
3775; ð116Þ
where MnWj ¼ Vj for j ¼ 1;2;3. Then, we construct an updated configuration
Xnþ1;k RhXnþ1;k þ a1V1 þ a2V2; ð117Þ
after which we proceed to calculate Xnþ1;kþ1 via (108) using an unmodified Fkþ1. In this manner we obtain an iteration which
converges rapidly to a solution of (23). This iteration converges nearly as quickly as (96) does for a fixed valve with no rota-
tion or translation. There is an additional cost per iteration though. The predominant cost comes from solving the linear sys-
tems involving Mn, which we must now do four times to calculate Wj for j ¼ 1;2;3 as well as Fkþ1.

Fortunately, these added costs are not significant in practice. The vectors W1 and W2 only need to be calculated once per
timestep. For our simulations, we calculate W3 only once per timestep as well, even though V3 depends on the current guess
Xnþ1;k. We find that this does not degrade the final residual beyond the limits of accuracy provided by our multigrid solver.
Moreover, Wj for j ¼ 1;2;3 will change only incrementally from one time-step to the next and hence these same vectors can
be reused as good initial guesses in the following several time-steps. At the end, the predominant cost of the proposed iter-
ators is that of initializing the linear system and multigrid itself.

7156 H.D. Ceniceros et al. / Journal of Computational Physics 228 (2009) 7137–7158
8.4. Near boundary–boundary interactions

There is an additional subtlety that we wish to point out. The prolongation and restriction operators we use in our mul-
tigrid for solvingMnWj ¼ Vj are geometrically inspired, relying on the underlying structure of the immersed boundary con-
figuration. However, this approach fails to give adequate weight to the fluid interactions between immersed boundaries, in
particular the interaction between the ends of the valve and the cushions as well as the interaction between the middle of
the valve and the hinges.

The linear multigrid we employ still converges in the current situation but not sufficiently fast at key points. To capture
accurately all the required dynamics between the valve and hinges to prevent collision and protrusion it is necessary to in-
crease significantly the number of multigrid cycles. While a robust algebraic multigrid algorithm with more appropriate pro-
longation and restriction operators might remedy this problem we opt here for a simple yet effective local alteration to our
smoother.

We maintain the standard Gauss–Seidel relaxation but in addition we also perform a direct solve, via Gaussian elimina-
tion, of a small subset of the problem. Because we are only concerned with the high accuracy needed to prevent collision
between the valve and hinge we isolate those points close to the hinge (see Fig. 6). Holding all other points outside this re-
gion fixed we then proceed to solve the resulting reduced system. Afterward we perform the standard Gauss–Seidel sweep to
smooth the interface between the points inside and outside the solved region. Because of the small size of the selected local
region, this procedure is quite inexpensive and does not contribute in a significant manner to the cost of the multigrid
iteration.

8.5. Numerical results

The initial condition is a rest configuration of all links and tethers. The valve rests between the two hinges and is par-
allel to the y-axis. The imposed flow is v flow ¼ 100 and all spring constants are taken to be k ¼ 109l�2, where l ¼ h=2 is the
Fig. 6. Configuration of our valve system after some period of time. The small box contains the subsystem of fiber points we solve exactly.

Table 10
Heart valve simulation with Forward Euler/Backward Euler scheme. The total CPU time taken to run the simulation up to time T is given, with the average CPU
time per timestep given.

N Average T ¼ 0:01 T ¼ 0:05 T ¼ 0:1 T ¼ 0:5

128 0.024 2110.49 10508.95 21017.90* 105089.54*

256 0.109 37687.16* 188435.83* 376871.66* 1884358.32*

384 0.249 193168.57* 965842.85* 1931685.70* 9658428.53*

512 0.503 694291.69* 3471458.49* 6942916.98* 34714584.93*

* Denotes an extrapolated value.

Table 11
Heart valve simulation with implicit scheme. The total CPU time taken to run the simulation up to time T is given, with the average CPU time per timestep
given. Dt ¼ 0:0025.

N Average T ¼ 0:01 T ¼ 0:05 T ¼ 0:1 T ¼ 0:5

128 0.588 2.001 10.436 21.155 117.767
256 2.014 7.640 38.171 76.297 402.749
384 4.747 18.735 93.266 186.270 949.409
512 9.538 34.984 174.702 348.531 1907.635

length between nodes in our valve. The magnitude of the velocities here reaches approximately 10 units, much smaller
than that in the elliptical membrane case. Taking a characteristic length to be the length of the heart valve we obtain
a Reynolds number of about 5. The smaller speeds lead to a mild CFL constraint and this allows our semi-implicit ap-
proach to show its power, even though now NB 	 4N and the cost of an implicit time-step is roughly 20 times that of
an explicit one.

For the FE/BE simulation Dt is again taken to be the maximum allowable while retaining stability, with Dt ¼ 30hk�1=2. For
the proposed semi-implicit approach we fix Dt ¼ 0:0025, well below the CFL restraint. With the constant imposed flow, the
valve will simply open. The CPU times for the explicit simulations are given in Table 10 with the results from the implicit
simulations following in Table 11. With a less restrictive CFL constraint the semi-implicit approach becomes Oð1000Þ faster
than FE/BE. Stability-wise, Dt may be taken even larger for the semi-implicit method, up to the limit of the CFL restraint,
leading to even greater savings in CPU time. However, this will typically increase leakage through the immersed boundary
and eventually allow the valve to collide and pass through the hinges.

To open and close the valve we consider a time dependent imposed flow v flowðtÞ. We define
v flowðtÞ ¼
60000tð0:1� tÞ t < 0:1;

�60000ðt � 0:1Þð0:2� tÞ t P 0:1;

	
ð118Þ
A sequence of snap-shots of the motion of the valve as it opens and closes is depicted in Fig. 7 where also flooded contours
of the vorticity are shown. Initially, there is a noticeable generation of (positive) vorticity at the upper and lower tips of the
valve as the valve opens as well as in the upper cushion. As the valve reverses its motion the vorticity in those same areas
evolves toward positive values and becomes large and localized as the valve closes.

9. Conclusion

Implicit methods for alleviating the stiffness of the IB Method have been around for some time. Their implementation
involves solving systems of equations typically thought to be prohibitively expensive. One of the main objectives of this work
is to illuminate paths to solving the systems arising from certain robust semi-implicit discretizations of the IB Method. We
have provided avenues to this end for three particular applications but there will likely remain challenges when extending
the techniques detailed here to the incredibly varied body of applications for which the IB Method can be employed.

A key benefit of the proposed methods is that they have no dependence on the specifics of the fluid solver Lh. If we use an
adaptive mesh to achieve fluid solves in OðNBÞ time then this will carry over to our implicit solvers, allowing us to take large
time steps with the minimal order cost possible. This is a particularly exciting prospect for extending the methodology to 3D
which is a current aim of our own ongoing research.

Acknowledgments

The authors would like to thank Charles Peskin, David McQueen, Thomas Hou, and Zuoqiang Shi for insightful discussions.
Partial support for this work was provided by the National Science Foundation under Grant No. DMS 0609996 (HDC and JEF)
and by FAPESP Grant number 00/02801-0 (AMR).

References

[1] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys 25 (1977) 220–252.
[2] J.M. Stockie, B.T.R. Wetton, Stability analysis for the immersed fiber problem, SIAM J. Appl. Math. 55 (6) (1995) 1577–1591.
[3] J.M. Stockie, B.R. Wetton, Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes, J. Comput. Phys. 154

(1999) 41–64.
[4] C. Tu, C.S. Peskin, Stability and instability in the computations of flows with moving immersed boundaries: a comparison of three methods, SIAM J. Sci.

Stat. Comput. 13 (6) (1992) 1361–1376.
[5] A.A. Mayo, C.S. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, in: A.Y. Cheer, C.P.V. Dam (Eds.),

	Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method
	Introduction
	The immersed boundary method
	Discretization
	Some comments on computational costs and efficiency
	An expedited computation of a matrix representation of {{\tf=
	Approximation from translation invariance at the continuum level
	Error estimate for approximation of the matrix representation of {{\cal{M}}}_{n}
	Additional considerations and optimizations concerning {\widetilde{M}}{}_{n}

	Case I: an initially elliptical drop with linear {{\cal{A}}}_{{h}_{B}}
	Numerical results

	Case II: an initially elliptical drop with nonlinear {{\cal{A}}}_{{h}_{B}}
	Numerical results

	Case III: a model of a heart valve
	The model
	Solving the implicit system
	Reintroducing translation and rotation iteratively
	Near boundary–boundary interactions
	Numerical results

	Conclusion
	Acknowledgments
	References

